

SPE 179911 - Analysis of Mineral Reactions Occurring in the Gyda Field under Seawater Injection with the Help of Geochemical Non-Isothermal Model and Produced Water Data

Yisheng Hu and Eric Mackay Institute of Petroleum Engineering, Heriot-Watt University, U.K. E-mail: yh145@hw.ac.uk

Abstract

The evidence from the produced brine chemistry suggests that the Gyda field has experienced a variety of geochemical reactions due to the high temperature and initial calcium concentration, and so it is worth reviewing the produced water dataset and studying what in situ geochemical reactions may be taking place. Produced brine chemistry data from 16 wells in the Gyda field are plotted and analysed in combination with general geological information and the reservoir description. A one dimensional reactive transport model is developed to identify the possible geochemical reactions occurring within the reservoir triggered by seawater injection, then extended with the inclusion of thermal modelling and also to be a two dimensional vertical cross section model.

Institute of Petroleum Engineering

One-dimensional reactive transport modelling results

Anhydrite in isothermal & non-isothermal cases

200000

15000

Cl concentration, mg/l

2-D vertical case

D Reservoir stud MOLALITY Component Ba++ Well(R) 2 base case - reaction_ie_vertical.in

Distance (m

Distance (m)

Produce⁷

Produce

Ba, Sr and Mg concentrations vary across the field, but the concentrations of other ions are more or less similar. > Na and Sr pure mixing Mg, Ba and SO4 stripping

The bigger the difference in permeability, the longer the plateau • "Plateau" where injection water produced from high permeability layer and formation water produced from low permeability layer, with mixing in the production wellbore

Conclusions

1) Anhydrite and barite precipitation were the two dominant mineral reactions taking place deep within the reservoir. Sulphate is the limiting ion, with barium and calcium in excess during barite and anhydrite deposition.

2) Celestite mineral reaction was not predicted, although the strontium concentration in the formation water is very high relative to other North Sea sandstone reservoirs. This is because strontium is unable to compete successfully with barium and calcium in the sulphate mineral precipitation reactions.

3) Magnesium stripping may be a result of multi-component ion exchange, dolomite precipitation or a combination of both. The occurrence of dolomite precipitation depends on calcite dissolution, so the dolomite can only be precipitated in or close to the calcite stringers.

- **Dominant scaling potential:** BaSO₄ and CaSO₄ precipitation
- SrSO₄ Saturation ratio > 1, but no SrSO₄ formation due to SO₄ being limiting ion
- Reduced BaSO₄ and CaSO₄ scaling at wells due to *in situ* ion stripping

4) Reservoir temperature was lowered by cold water injection. The solubility of anhydrite increases at lower temperature, and anhydrite will gradually dissolve in response to the movement of the temperature front, which is much slower than the formation/injection water mixing front.

5) The extent of mineral precipitation within the reservoir can be reduced by the heterogeneity, leading to more severe scaling risk in the production wells.

Acknowledgments

Foundation CMG is thanked for supporting the studentship held by Yisheng Hu and the Chair in Reactive Flow Simulation held by Eric Mackay. The following are thanked for their support of the FAST5 JIP at Heriot-Watt University: Apache, Baker Hughes, BG Group, BP, Chevron, Clariant, ConocoPhillips, Equion, GALP, Maersk, MI Swaco, Multi-Chem, MWV, NalcoChampion, Nexen, Petrobras, Petronas, REP, Shell, Statoil, Talisman Sinopec, Total and Wintershall. CMG Ltd is thanked for use of GEM reservoir simulator.

Institute of Petroleum Engineering, Edinburgh EH14 4AS